The amazing power of Python and the Pandas framework!
This code connects to a Mysql database, reads ths content of a table and imports it into a Dataframe. From there you can twist and turn the data as if it was in an Excel spreadsheet.
import mysql.connector as sql import pandas as pd db_connection = sql.connect(host='x.y.z.w', database='xxxx', user='xxxx',password='xxxx') db_cursor = db_connection.cursor() db_cursor.execute('SELECT * FROM trades') table_rows = db_cursor.fetchall() df = pd.DataFrame(table_rows) print(df)
And another version of the same functionality:
#!/usr/bin/env python import pandas as pd from sqlalchemy import create_engine # SQLAlchemy engine parameters dbtype = "mysql" dbconn = "mysqlconnector" dbuser = "xxxx" dbpass = "xxxx" dbhost = "x.y.z.w" dbschm = "xxxx" dbecho = True # Connect to the DB engine = create_engine(f"{dbtype}+{dbconn}://{dbuser}:{dbpass}@{dbhost}/{dbschm}?charset=utf8mb4", echo=dbecho) engine.connect() # Read whole table into dataframe df = pd.read_sql_table("products", engine) # Bonus: export whole dataframe to CSV file without row numbers df.to_csv("products.csv", index=False)